229 research outputs found

    Landscape based on three-dimensional SketchUp modelling to get visualization applications

    Get PDF
    Abstract Landscape designing CAD software are now mostly in two-dimensional draft stage in domestic, and three-dimensional visualization of designed landscape models and applications are still in the initial stage. The essay based on precise three dimensional solid modelling SketchUp software, introduces SketchUp software functions and features, and focuses on three aspects of garden design, hand-painted TIN terrain design, planting design and planning and design of garden objects. Through engineering examples to import the landscape of two-dimension vector data into SketchUp software, use SketchUp techniques flexibly to solve different details and avoid redundant and diverse work. After rendering and post processing, establishing a realistic visualization of three-dimensional entity model

    Band-to-Band Misregistration of the Images of MODIS On-Board Calibrators and Its Impact to Calibration

    Get PDF
    The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS

    On-Orbit Lunar Modulation Transfer Function Measurements for the Moderate Resolution Imaging Spectroradiometer

    Get PDF
    Spatial quality of an imaging sensor can be estimated by evaluating its modulation transfer function (MTF) from many different sources such as a sharp edge, a pulse target, or bar patterns with different spatial frequencies. These well-defined targets are frequently used for prelaunch laboratory tests, providing very reliable and accurate MTF measurements. A laboratory-quality edge input source was included in the spatial-mode operation of the Spectroradiometric Calibration Assembly (SRCA), which is one of the onboard calibrators of the Moderate Resolution Imaging Spectroradiometer (MODIS). Since not all imaging satellites have such an instrument, SRCA MTF estimations can be used as a reference for an on-orbit lunar MTF algorithm and results. In this paper, the prelaunch spatial quality characterization process from the Integrated Alignment Collimator and SRCA is briefly discussed. Based on prelaunch MTF calibration using the SRCA, a lunar MTF algorithm is developed and applied to the lifetime on-orbit Terra and Aqua MODIS lunar collections. In each lunar collection, multiple scan-directionMoon-to-background transition profiles are aligned by the subpixel edge locations from a parametric Fermi function fit. Corresponding accumulated edge profiles are filtered and interpolated to obtain the edge spread function (ESF). The MTF is calculated by applying a Fourier transformation on the line spread function through a simple differentiation of the ESF. The lifetime lunar MTF results are analyzed and filtered by a relationship with the Sun-Earth-MODIS angle. Finally, the filtered lunarMTF values are compared to the SRCA MTF results. This comparison provides the level of accuracy for on-orbit MTF estimations validated through prelaunch SRCA measurements. The lunar MTF values had larger uncertainty than the SRCA MTF results; however, the ratio mean of lunarMTF fit and SRCA MTF values is within 2% in the 250- and 500-m bands. Based on the MTF measurement uncertainty range, the suggested lunar MTF algorithm can be applied to any on-orbit imaging sensor with lunar calibration capability

    Finite element study on mechanical performances of multi-span metal faced sandwich panels under temperature actions

    Get PDF
    Metal faced sandwich panel is composed of two relatively high strength metal faces and a relatively thick and lightweight insulated core. Under the continuous action of temperature such as strong sunlight, the multi-span metal faced sandwich panels can be destroyed. In this paper, the finite element (FE) software ABAQUS was used to study the stress and deformation of these sandwich panels under temperature action. The FE results show that the compressive stress in the mid-span region of the metal panel is larger and it gradually decreased from the middle to the two sides. The deformation at the centre of side span of sandwich panels is larger. The support constraints at the bottom of the sandwich panel have a great influence on the temperature stress. The fixed sandwich panel is more likely to occur wrinkle failure than the hinged one. To reduce the effects of temperature, two effective methods are proposed. The method increasing the density of the core material can increase the buckling stress and improve the bearing capacity against temperature action. The other method reducing the length of each segment of the sandwich panel can effectively release the temperature stress and reduce the negative effects of temperature

    Finite element study on bearing capacities of hook-bolt joint of assembled GRC wall with light steel skeleton frame

    Get PDF
    A new assembled external wall is composed of two glass fiber reinforced concrete (GRC) panels and built-in light steel skeleton frames and a layer of filled insulated core materials. To connect this new wall to the main steel structure, the new hook-bolt joint is used. The finite element (FE) software ABAQUS was used to study the bearing capacities of hook-bolt joint under horizontal force and vertical force. The FE results show that under horizontal and vertical force, the hook-bolt joint shows good elastic-plastic behaviour. In the initial stage of displacement loading, there is slip displacement stage and the load is very small. After this initial stage, with the gradual increase of displacement, the load increases gradually. Larger stresses are mainly distributed at the intersection of the hook-shaped connector and the U-shaped connector. The vertical bearing capacity of the hook-bolt joint is about two times larger than that of horizontal one. These studies can provide referential basis for the design and application of the hook-bolt joint of the assembled wall with light steel skeleton frame
    corecore